Nether Kellet Primary School
Nether Kellet Primary School

Maths

Click here for the Maths Programme of Study.

At Nether Kellet Primary we teach mathematics systematically and with a fundamental emphasis on teaching for real understanding.  We enrich understanding through applying the maths we learn to solve problems in accordance with maths mastery. To this end, we use White Rose Hub resources to support our teaching where the emphasis is upon a progression from concrete to pictorial to abstract and applying learning in ways that develops deeper thinking.  We also use our own activities and investigations in addition to this. We ensure that all of the National Curriculum content is delivered in a progressive way by using the White Rose schemes of learning for each year group. Differentiation is by ability and prior understanding. We aim for all children to work in line with age-related expectations wherever possible and provide additional support and challenge on an individualised basis to ensure understanding and optimise progress.

SEND – For children with special educational needs and disabilities, we ensure that all of our teaching is inclusive of their needs. We place a high emphasis upon all of the children using practical resources and visual models to support understanding and additional resources, 1:1 TA support, small group work and practical activities are used routinely and in targeted ways for children with additional needs. We have maths intervention sessions in small groups and 1:1 to pick up on misconceptions and gaps in understanding. Where children have specific barriers, these are addressed through IEP targets and support.

For the four rules of number: addition, subtraction, multiplication and division, we place a great emphasis upon the mental strategies, understanding of the number system and counting that underpins all calculation.  To aid this we have our Maths Learning Journey Steps: individual targets which the children progress through as they move through school.  (Maths Learning Journey steps are detailed below). Children practise these at home as well as the mental maths skills being taught in school.

In order to develop increasingly complex calculation, we follow progression in calculation policies which systematically build on children’s understanding starting with concrete resources and examples, moving to pictorial and visual images and finally to more abstract and conceptual understanding.  All written calculation methods are taught by building on mental mathematical understanding with a focus on continually developing mental maths and understanding of the number system while developing efficient and reliable methods of calculation.  Children only move onto the next stage of calculation when they are confident with the stage they are at.  At every stage the children first of all ask themselves: “can I do it in my head or in my head with jottings?” before using a more formal written method to enable them to make informed choices and work efficiently.

Progression Towards a Written Method policies for each of the four operations: our main policies are based on the Lancashire policies with some adaptations for our school. These are supplemented by the White Rose Calculation Policy which gives more detailed concrete and pictorial representations that we use to aid understanding.

Mental Maths Targets: the children begin to work on these Year 1. We know that fluency in mental maths underpins good maths learning so a high emphasis is placed on children learning maths facts and having a good sense of the number system and the mental agility to calculate mentally. We aim for as many children as possible to have a rapid recall of multiplication and division tables facts by the end of Year 4. Intervention support for mental maths is put into place for individual children. We ask that children are supported by parents to practise their Learning Journey Step at home every day. This leaflet gives ideas on how you can support your child at home with their mental maths:

Learning Journey Steps – Mental Maths Targets

Step 1I can say straight away:
 1 more than a number within 10
 1 less than a number within 10
I can count:
 Forwards to 20
 Backwards from 20 
Step 2I can say straight away:
 1 more than a number within 20
 1 less than a number within 20
I can work out:
 Pairs of numbers totalling 10
I can count:
 In 2s to 20, 5s to 50 and 10s to 100 
 Forwards to 100 in 1s
I can tell the time:
 o’clock on a clock with hands
 Know the days of the week in order 
Step 3I can say straight away:
 all pairs of numbers totalling 10
 addition and subtraction facts using numbers up to 5 with answers up to 5 e.g. 4-2, 3+2(using vocab: add, plus, altogether, more than, difference, less than, take away, subtract, minus)
I can work out:
 multiples of 2, 5 and 10 to the tenth multiple (using vocab: times, multiplied by, multiple)
I can count:
 Backwards from 100 in 1s
I can tell the time:
 half past on a clock with hands
 know the months of the year in order
 know which day comes before/ after another day 
Step 4I can say straight away:
 addition and subtraction facts using numbers up to 10 and answers up to 10 e.g. 9-3, 4+5, 7-5(using vocab: add, plus, altogether, total, more than, take, subtract, minus, difference, less than, fewer than)
 all pairs of numbers totalling  20  e.g. 14 + 6
 doubles of all numbers to 10  e.g. 7 + 7
 multiplication facts for the 2, 5 and 10 times-tables (using vocab: times, multiply, multiplied by, multiple of, divided by, how many in)
I can work out:
 division facts for the 2,5 and 10 times-tables
I can count:
 in 3s  to 30 and 4s to 40
 to 200 in 1s
 in 10s to 1000
I can tell the time:
 quarter to/past on a clock with hands
 o’clock on a digital 12 hour clock
 know how many minutes in an hour/seconds in a minute
 know which month comes before/ after another month 
Step 5I can say straight away:
 addition facts using numbers up to 20 with answers up to 20 e.g. 12+4, 7+8, 9+5(using vocab: add, plus, altogether, sum, total, more than)
 all pairs of multiples of 10 with totals up to 100, e.g. 30 + 60  40 + 30   40 + 60 doubles of all numbers to 20 and the corresponding halves e.g. 14+14,  half of 30
 multiplication facts for the 2, 5 and 10 times-tables and corresponding division facts(using vocab: times, multiply, multiplied by, multiple of, divided by, how many in)
I can work out:
 multiplication facts for the 3 and 4 times tables
I can count:
 in 3s and 4s backwards
 backwards within 200 in 1s
 backwards from 1000 in 10s
I can tell the time:
 to the nearest 5 minute interval on a clock with hands
 know the relationship between seconds, minutes, hours, days, weeks (how many?)
 half past on a 12 hour digital clock 
Step 6I can say straight away:
 addition and subtraction facts for each number within 20  e.g. 14 – 9, 8 + 7, 19 – 11(using vocab: add, plus, altogether, sum, total, more than, minus, take, subtract, difference, less than, fewer than)
 Pairs of numbers totalling 100 e.g. 64+36,82+18 
 multiplication and division facts for the 2,3,4,5 and 10 times tables.(using vocab: times, multiply, multiplied by, multiple of, product, divided by, how many in)
I can work out:
 multiplication facts for the 6 and 8 times tables.
 sums and differences of multiples of 10 up to 200 e.g. 70 + 20, 80 – 30, 120 – 40
I can count:
 to 1000 in 1s and backwards from 1000 in 1s (starting from a random number)
 in 6s and 8s
I can tell the time:
 read the time to 1 minute intervals on an analogue clock
 convert analogue to 12 hour digital time and vice versa up to half past the hour (09:27 but not 09:45)
 know how many days/weeks in a year 
Step 7I can say straight away:
 multiplication and division facts for the 2,3,4,5,6,8 and 10 times tables.(using vocab: times, multiply, multiplied by, multiple of, product, divided by, how many in)
 sums and differences of multiples of 10 up to 200 e.g. 80+50, 120-90(using vocab: add, plus, altogether, sum, total, more than, minus, take, subtract, difference, less than, fewer than)
I can work out:
 multiplication facts for 7 and 9 times tables
 sums and differences of multiples of 100 up to 2000 e.g. 700 + 200, 800 – 300,1400 – 800
 sums and differences of multiples of 10 including crossing the hundreds boundary e.g. 70+50, 140-50
 simple unit fractions of whole numbers e.g. ¼ of 20, 1/3 of 12, 1/5 of 30, 1/10 of 50
I can count:
 in 0.1s forwards and backwards
 in 7s and 9s
I can tell the time:
 convert analogue to 12 hour digital time and vice versa
 understand am and pm
 know the relationship between seconds, minutes, hours, days, weeks, months, years, decades, centuries, including leap year 
Step 8I can say straight away:
 multiplication facts up to 10 x 10 and the corresponding division facts(using vocab: times, multiply, multiplied by, multiple of, product, divided by, how many in, quotient)
 sums and differences of pairs of multiples of 10, 100, 1000 e.g. 50 + 90, 180 – 60, 700 + 800, 5000 + 8000, 1200 – 400, 2000 – 600(using vocab: add, plus, altogether, sum, total, more than, increase, minus, take, subtract, difference, less than, fewer than, decrease)
I can work out:
 doubles of multiples of 10 (>100) and  of 100 and corresponding halves e.g. 170 x 2, ½ of 180, 340 x 2, 800 x 2, ½ of 1400, ½ of 560, 
 multiplication and division facts for 11 and 12 times tablesI can count:
 within 10000 in 1s ,10s and 100s including crossing boundaries e.g. 2980, 2990, 3000, 3010….  or 6100, 6000, 5900, 5800…. (from a random number)
I can tell the time:
 convert analogue to 24 hour digital time and vice versa
 calculate time intervals of hours and minutes between times on the 12 hour clock
 know how many days are in each month 
Step 9I can say straight away:
 multiples of 10 up to the tenth multiple e.g.  70 x 4, 70 x 10, 90 x 6, 90 x 10
 division facts linked to above e.g. 210 ÷ 7, 450 ÷ 5, 360 ÷ 60(using vocab: times, multiply, multiplied by, multiple of, product, divided by, how many in, quotient)
 multiplication and division facts for the 11 and 12 times tables
I can work out:
 sums and differences of decimals e.g. 6.5 + 2.7, 9.8 – 3.9(using vocab: add, plus, altogether, sum, total, more than, increase, minus, take, subtract, difference, less than, fewer than, decrease)
 doubles and halves of decimals e.g. ½  of 5.6
 any fractions of numbers e.g. 3/7 of 21, 4/5 of 30, 5/9 of 45
I can count:
 in tenths, hundredths, thousandths including crossing boundaries e.g. 2.9, 3, 3.1 and 1.98, 1.99, 2, 2.01… and 0.008, 0.009, 0.01, 0.011…
I can tell the time:
 calculate time intervals of hours and minutes between times on both the 12 and 24 hour clock
 use knowledge of days in a month to calculate time difference in days 
Step 10I can say straight away:
 doubles and halves of decimals e.g. ½  of 5.6, double 3.7
 simple fractions of numbers e.g. 1/7 of 35, 1/8 of 56, 3/4 of 20, 2/3 of 18
I can work out:
 multiplication and division facts involving decimals, e.g. 0.8 x 7 and 4.8 ÷ 6
 multiplication and division facts using 2 multiples of 10 e.g. 80 x 40 or 2400 ÷ 60(using vocab: times, multiply, multiple of, product, divided by, how many in, quotient)
 squares of numbers to 12 x 12 and the corresponding squares of multiples of 10 e.g. 60 x 60
 simple conversions between fractions, decimals and percentages e.g. 3/10, 2/5, 12%, 0.4 
I can count:
 in tenths, hundredths, thousandths in larger step sizes forwards and backwards, e.g. 2.31, 2.34, 2.37…..   5.012, 5.008, 5.004…. 
Step 11I can say straight away:
 squares of numbers to 12 x 12 and corresponding squares of multiples of 10 eg. 80 x 80 
 square roots of all square numbers below 150 eg √64 = 8
 simple conversions between fractions, decimals and percentages e.g. 3/10, 2/5, 12%, 0.4 
 multiples of any number within 12
 factor pairs for specific numbers within 200
I can work out:
 squares of multiples of 100 and 1000 and corresponding square roots
 addition of fractions with the same denominator e.g. 2/5 + 4/5 and conversion to mixed numbers where appropriate
 simple % of quantities e.g. multiples of 10% and 25%, 75%
 area and perimeter of rectangles with whole number length and width 
 simplification of fractions using the HCF e.g. 6/18 = 2/9
(understand and use vocab: sum, total, increase, minus, difference, fewer than, decrease, product, quotient)
 I can use shape vocabulary accurately:
 to describe isosceles, equilateral, scalene and right angle triangles and their angles
 to name common 2d shapes and describe their properties in terms of sides, angles, parallel, perpendicular sides and lines of symmetry
I can tell the time:
 on a clock with Roman numerals
 calculate angles of turn of a clock hand e.g. from 5 to 9= 120°
Step 12I can say straight away:
 squares of multiples of 100 and 1000 and corresponding square roots
 addition of fractions with the same denominator e.g. 2/5 + 4/5 and convert to mixed numbers where appropriate
 simple % of quantities e.g. multiples of 10%, 25%, 75%
 factor pairs for specific numbers within 100
 area and perimeter of rectangles with whole number length and width e.g. 7cm x 9cm  12cm x 20cm
I can work out:
 multiplication and division facts involving decimals to 2 d.p., e.g. 0.08 x 0.7 and 0.48 ÷ 6
 cubed numbers for numbers within 10 e.g. 6³ and add and subtract n² and n³
 % of quantities where the %age is a multiple of 5
 addition or subtraction of fractions with different denominators by finding the LCD e.g. 3/5 + 4/7
 addition, subtraction, multiplication and division of Roman numerals e.g  C x L    XII + XXIV 
I can use shape vocabulary accurately:
 to name common 3d shapes and describe their properties in terms of vertices, edges, numbers and shapes of faces
 to estimate angles accurately to within 15° on sight  
 to calculate radius of a circle from the diameter and vice versa